فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی










متن کامل


نویسندگان: 

Kian M. | DEHGHANI M. | SATTARI M.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    15
  • شماره: 

    3
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    50
  • دانلود: 

    0
چکیده: 

Please click on PDF to view the abstract.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 50

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    46
تعامل: 
  • بازدید: 

    176
  • دانلود: 

    0
چکیده: 

Numerical RANGE OF A HERMITIAN MATRIXX IS DEFINED AS THE SET OF ALL POSSIBLE EXPECTATION VALUES OF THIS OBSERVABLE AMONG A NORMALIZED QUANTUM STATE. IN THIS PAPER, WE STUDY A MODIFICATION OF THIS DEFINITION IN WHICH THE EXPECTATION VALUE IS TAKEN AMONG A CERTAIN SUBSET OF THE SET OF ALL QUANTUM STATES, KNOWN ASK-ENTANGLED PURE STATES. WE ALSO ANALYZE BASIC PROPERTIES OF THE RELATED Numerical radius AND ITS APPLICATIONS IN QUANTUM INFORMATION THEORY.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 176

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Pouladi Najafabadi F. | MORADI H.R.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    11
  • شماره: 

    4
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    120
  • دانلود: 

    0
چکیده: 

By taking into account that the computation of the Numerical radius is an optimization problem, we prove, in this paper, several refinements of the Numerical radius inequalities for Hilbert space operators. It is shown, among other inequalities, that if A is a bounded linear operator on a complex Hilbert space, then ω,(A) ≤,1 2 r |A|2 + |A∗, |2 + ∥, |A| |A∗, | + |A∗, | |A|∥, , where ω,(A), ∥, A∥, , and |A| are the Numerical radius, the usual operator norm, and the absolute value of A, respectively. This inequality provides a refinement of an earlier Numerical radius inequality due to Kittaneh, namely, ω,(A) ≤,1 2 ,∥, A∥,+ A2 12 , . Some related inequalities are also discussed.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 120

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

SHEIKH HOSSEINI A.

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    44
تعامل: 
  • بازدید: 

    136
  • دانلود: 

    0
چکیده: 

IN THIS PAPER, WE USE AN EXAMPLE OF POSITIVE DEFINITE FUNCTIONS AND THE POSITIVE DEFINITE MATRIX ARISING FROM IT TO DERIVEAN INEQUALITY FOR Numerical radius OF MATRICES.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 136

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    46
تعامل: 
  • بازدید: 

    151
  • دانلود: 

    0
چکیده: 

IN THIS TALK, WE PROVIDE A GENERALIZATION OF A Numerical radius INEQUALITY INCLUDING PRODUCT OF TWO OPERATORS ON A HILBERT SPACE WHICH IS SHARPER THAN ORIGINAL INEQUALITY IN A PARTICULAR POSITION. AN APPLICATION OF THIS INEQUALITY TO PROVE A Numerical radius INEQUALITY THAT INVOLVES THE GENERALIZED ALUTHGE TRANSFORM IS ALSO GIVEN. IN ADDITION, OUR RESULTS GENERALIZE SOME KNOWN INEQUALITIES. FOR ANY A, B, X Î B (H) SUCH THAT A, B³ 0, WE PREPARE NEW ESTIMATION FOR THE Numerical radius OF TWO TERMS AA XBA , AA XB1- A (0 £ A£1) AND HEINZ MEANS. OTHER RELATED INEQUALITIES ARE ALSO DISCUSSED.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 151

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

SHAH HOSSEINI M. | MOOSAVI B.

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    16
  • شماره: 

    12
  • صفحات: 

    00-00
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    46
  • دانلود: 

    0
چکیده: 

We introduce some Numerical radius inequalities for prod-ucts of two Hilbert space operators. Among other inequalities, it is shown that if S,T 2 B(H) and ST = TS , , then! (ST) , ! (S)! (T) + 1 2 DS sup , 2R Dei, T+e􀀀, i, T, , where DS = inf , 2C ∥, S 􀀀,, I∥, . Also, we show that if S,T 2 B(H) and S be self-adjointable, then! (ST) ,( 2∥, S∥,􀀀,min , 2, (S) j, j )! (T):

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 46

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Khatib Y. | HASSANI M. | AMYARI M.

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    16
  • شماره: 

    7
  • صفحات: 

    00-00
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    37
  • دانلود: 

    0
چکیده: 

We present some new Numerical radius inequalities of Hilbert space operators. We improve and generalize some inequalities with respect to Specht’, s ratio. Let A and B be two positive invertible operators on a Hilbert space H and let X be a bounded operator on H. Then ω, ((A♮, B)X) ≤,1 2S( √,h) ∥, X ∗,BX + A∥, , (h > 0, h ̸, = 1) where ∥,·,∥, , ω, (·, ), S(·, ), and ♮,denote the usual operator norm, Numerical radius, the Specht’, s ratio, and the operator geometric mean, respectively.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1397
  • دوره: 

    4
  • شماره: 

    15
  • صفحات: 

    81-86
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    682
  • دانلود: 

    133
چکیده: 

در این مقاله ابتدا تعریف جدیدی از شعاع عددی برای عملگرهای دارای الحاق بر روی یک فضای هیلبرت مدول ارایه و سپس روابطی بین نرم عملگری با این شعاع عددی جدید معرفی می شود. این نامساوی ها به عنوان توسیعی از نامساوی های مشهور ثابت شده توسط سایر ریاضیدانان برای عملگرهای خطی و کران دار تعریف شده بر روی فضای هیلبرت می باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 682

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 133 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

ABU OMAR AMER | KITTANEH FUAD

اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    56-62
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    228
  • دانلود: 

    0
چکیده: 

We apply Numerical radius and spectral radius estimates to the Frobenius companion matrices of monic polynomials to derive new bounds for their zeros and give different proofs of some known bounds.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 228

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    53
  • شماره: 

    4
  • صفحات: 

    291-297
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    44
  • دانلود: 

    5
چکیده: 

In this paper, recommended spiral passive micromixer was designed and simulated. spiral design has the potential to create and strengthen the centrifugal force and the secondary flow. A series of simulations were carried out to evaluate the effects of channel width, channel depth, the gap between loops, and flowrate on the micromixer performance. These features impact the contact area of the two fluids and ultimately lead to an increment in the quality of the mixture. In this study, for the flow rate of 25 μl/min and molecular diffusion coefficient of 1×10-10 m2/s, mixing efficiency of more than 90% is achieved after 30 (approximately one-third of the total channel length). Finally, the optimized design fabricated using proposed 3D printing method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 44

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 5 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button